Role of rare mutation in UTR region of human CYP4B1, GMPPB gene in Tuberculosis infection

Main Article Content

Article Sidebar

Published Oct 8, 2021
Manjunatha Reddy Tanusree Chaudhuri Rangaswamy BE Sumathra Manokaran

Abstract

Mycobacterium tuberculosis (Mtb) is the major causative organism for tuberculosis. It is one of the major causes of death worldwide. Every year the world shows around 9 million new TB cases. Moreover, every year around 2 million people die because of this pathogen. On the top of that, it is being predicted that, around 2 billion people are infected with latent TB worldwide. The progression of this disease is much dependent on the host immunological constitution. During active infection the bacteria present in the body replicates very fast which cannot be controlled by the immune cell present in the body. This makes a person sick. Sometimes, this scenario arrives as soon as a person gets infected with the bacterium. This indicates that, these person’s immune systems are not strong enough to protect. Moreover, there are a couple of other diseases like HIV, T2DM found to have a song association with TB, weaking our immune systems. The hosts that suffer with different disease are known as immunocompromised. They are at higher risk than other hosts. So it is important to understand the host’s genetic makeup to understand the progression of the bacteria. In this study we focused on the host centric approach and screened 171 genes with 335 location having 2135 number of variants from 100 Indian patient samples. We have identified two genes CYP4B1 and GMPPB having 3’UTR mutation which might be related to immunocompromised host. We have identified three novel missense mutations in ANKK1, GPR55 and TXNDR2 genes, which might also play a significant role in TB infection.

How to Cite

Reddy, M., Chaudhuri, T., Rangaswamy BE, & Manokaran, S. (2021). Role of rare mutation in UTR region of human CYP4B1, GMPPB gene in Tuberculosis infection. SPAST Abstracts, 1(01). Retrieved from https://spast.org/techrep/article/view/1862
Abstract 43 |

Article Details

Keywords

Tuberculosis, SNV, Variant detection, Human

References
1. Woo M, Wood C, Kwon D, Park K-HP, Fejer G, Delorme V. Mycobacterium tuberculosis Infection and Innate Responses in a New Model of Lung Alveolar Macrophages. Front Immunol. 2018;9: 438. doi:10.3389/fimmu.2018.00438
2. Korch SB, Contreras H, Clark-Curtiss JE. Three Mycobacterium tuberculosis rel toxin-antitoxin modules inhibit mycobacterial growth and are expressed in infected human macrophages. J Bacteriol. 2009;191: 1618–1630. doi:10.1128/JB.01318-08
3. Shim D, Kim H, Shin SJ. Mycobacterium tuberculosis Infection-Driven Foamy Macrophages and Their Implications in Tuberculosis Control as Targets for Host-Directed Therapy. Frontiers in Immunology. Frontiers Media S.A.; 2020. doi:10.3389/fimmu.2020.00910
4. Penn BH, Netter Z, Johnson JR, Von Dollen J, Jang GM, Johnson T, et al. An Mtb-Human Protein-Protein Interaction Map Identifies a Switch between Host Antiviral and Antibacterial Responses. Mol Cell. 2018;71: 637-648.e5. doi:10.1016/j.molcel.2018.07.010
5. O’Toole RF, Gautam SS. The host microbiome and impact of tuberculosis chemotherapy. Tuberculosis. Churchill Livingstone; 2018. pp. 26–29. doi:10.1016/j.tube.2018.08.015
6. Zhong H, Magee MJ, Huang Y, Hui Q, Gwinn M, Gandhi NR, et al. Evaluation of the Host Genetic Effects of Tuberculosis-Associated Variants Among Patients With Type 1 and Type 2 Diabetes Mellitus. Open Forum Infect Dis. 2020;7. doi:10.1093/ofid/ofaa106
7. Gagneux S. Host-pathogen coevolution in human tuberculosis. Philosophical Transactions of the Royal Society B: Biological Sciences. Royal Society; 2012. pp. 850–859. doi:10.1098/rstb.2011.0316
8. Kiechl S, Werner P, Egger G, Oberhollenzer F, Mayr M, Xu Q, et al. Active and passive smoking, chronic infections, and the risk of carotid atherosclerosis: Prospective results from the Bruneck Study. Stroke. 2002;33: 2170–2176. doi:10.1161/01.STR.0000027209.59821.98
9. Batra R, Suh MK, Carson JS, Dale MA, Meisinger TM, Fitzgerald M, et al. IL-1β (Interleukin-1β) and TNF-α (Tumor Necrosis Factor-α) Impact Abdominal Aortic Aneurysm Formation by Differential Effects on Macrophage Polarization. Arterioscler Thromb Vasc Biol. 2018;38: 457–463. doi:10.1161/ATVBAHA.117.310333
10. Ilievska-Poposka B, Zakoska M, Pilovska-Spasovska K, Simonovska L, Mitreski V. Tuberculosis in the prisons in the Republic of Macedonia, 2008-2017. Open Access Maced J Med Sci. 2018;6: 1300–1304. doi:10.3889/oamjms.2018.281
11. Panda S, Tiwari A, Luthra K, Sharma SK, Singh A. Association of Fok1 VDR polymorphism with Vitamin D and its associated molecules in pulmonary tuberculosis patients and their household contacts. Sci Rep. 2019;9. doi:10.1038/s41598-019-51803-8
12. Aravindan P. Host genetics and tuberculosis: Theory of genetic polymorphism and tuberculosis. Lung India. 2019;36: 244–252. doi:10.4103/lungindia.lungindia_146_15
13. Hu Z, Tao SS, Liu H, Pan G, Li B, Zhang Z. The Association between Polymorphisms of Vitamin D Metabolic-Related Genes and Vitamin D3 Supplementation in Type 2 Diabetic Patients. J Diabetes Res. 2019;2019. doi:10.1155/2019/8289741
14. Pearce ME, Alikhan NF, Dallman TJ, Zhou Z, Grant K, Maiden MCJ. Comparative analysis of core genome MLST and SNP typing within a European Salmonella serovar Enteritidis outbreak. Int J Food Microbiol. 2018;274: 1–11. doi:10.1016/j.ijfoodmicro.2018.02.023
15. Packer S, Green C, Brooks-Pollock E, Chaintarli K, Harrison S, Beck CR. Social network analysis and whole genome sequencing in a cohort study to investigate TB transmission in an educational setting. BMC Infect Dis. 2019;19. doi:10.1186/s12879-019-3734-8
16. Zhong H, Magee MJ, Huang Y, Hui Q, Gwinn M, Gandhi NR, et al. Evaluation of the Host Genetic Effects of Tuberculosis-Associated Variants Among Patients With Type 1 and Type 2 Diabetes Mellitus. Open Forum Infect Dis. 2020;7. doi:10.1093/ofid/ofaa106
17. Sahajpal R, Kandoi G, Dhiman H, Raj S, Scaria V, Bhartiya D, et al. HGV&TB: A comprehensive online resource on human genes and genetic variants associated with tuberculosis. Database. 2014;2014: 112. doi:10.1093/database/bau112
18. Purzycka KJ, Popenda M, Szachniuk M, Antczak M, Lukasiak P, Blazewicz J, et al. Automated 3D RNA structure prediction using the RNAComposer method for riboswitches1. Methods in Enzymology. Academic Press Inc.; 2015. pp. 3–34. doi:10.1016/bs.mie.2014.10.050
19. Biesiada M, Pachulska-Wieczorek K, Adamiak RW, Purzycka KJ. RNAComposer and RNA 3D structure prediction for nanotechnology. Methods. 2016;103: 120–127. doi:10.1016/j.ymeth.2016.03.010
20. Mathews DH, Moss WN, Turner DH. Folding and finding RNA secondary structure. Cold Spring Harbor perspectives in biology. Cold Spring Harbor Laboratory Press; 2010. doi:10.1101/cshperspect.a003665
21. Lorenz R, Bernhart SH, Höner zu Siederdissen C, Tafer H, Flamm C, Stadler PF, et al. ViennaRNA Package 2.0. Algorithms Mol Biol. 2011;6: 26. doi:10.1186/1748-7188-6-26
22. Čech P, Svozil D, Hoksza D. SETTER: Web server for RNA structure comparison. Nucleic Acids Res. 2012;40: W42. doi:10.1093/nar/gks560
23. Ronacher K, Joosten SA, van Crevel R, Dockrell HM, Walzl G, Ottenhoff THM. Acquired immunodeficiencies and tuberculosis: Focus on HIV/AIDS and diabetes mellitus. Immunol Rev. 2015;264: 121–137. doi:10.1111/imr.12257
24. Hemmingsen B, Schroll JB, Lund SS, Wetterslev J, Gluud C, Vaag A, et al. Sulphonylurea monotherapy for patients with type 2 diabetes mellitus. Cochrane Database of Systematic Reviews. John Wiley and Sons Ltd; 2013. doi:10.1002/14651858.CD009008.pub2
25. Shehzad A, Rehman G, Ul-Islam M, Khattak WA, Lee YS. Challenges in the development of drugs for the treatment of tuberculosis. Brazilian Journal of Infectious Diseases. Elsevier Editora Ltda; 2013. pp. 74–81. doi:10.1016/j.bjid.2012.10.009
26. Smith WL, Michael Garavito R, DeWitt DL. Prostaglandin endoperoxide H syntheses (cyclooxygenases)-1 and -2. J Biol Chem. 1996;271: 33157–33160. doi:10.1074/jbc.271.52.33157
27. Inoue H, Tanabe T, Umesono K. Feedback control of cyclooxygenase-2 expression through PPARγ. J Biol Chem. 2000;275: 28028–28032. doi:10.1074/jbc.M001387200
28. Ferlita S, Yegiazaryan A, Noori N, Lal G, Nguyen T, To K, et al. Type 2 Diabetes Mellitus and Altered Immune System Leading to Susceptibility to Pathogens, Especially Mycobacterium tuberculosis. J Clin Med. 2019;8: 2219. doi:10.3390/jcm8122219
29. Ojanen MJT, Uusi-Mäkelä MIE, Harjula SKE, Saralahti AK, Oksanen KE, Kähkönen N, et al. Intelectin 3 is dispensable for resistance against a mycobacterial infection in zebrafish (Danio rerio). Sci Rep. 2019;9. doi:10.1038/s41598-018-37678-1
Section
NB:Biology

Most read articles by the same author(s)

1 2 > >>