Phytogenic synthesis of Cr2O3 nanoparticles using plant extract

Main Article Content

Article Sidebar

Published Sep 30, 2021
Alwin David S Ramkumar P

Abstract

Currently, chromic oxide nanoparticles are one of the noteworthy nanoparticles with exceptional applications in numerous fields of recent science. When Cr2O3 NPs is synthesized using plant extracts, it has several features like antidiabetic, anticancer, antiviral, antifungal, antioxidant, antibacterial and antileshmanial activity. Almost all parts of a plant such as flowers, leaves, fruits, roots contain terpenoids, alkaloids, tannins, flavonoids and phenols which can act as both reducing and stabilizing agent. In recent times, plant extracts like Opuntia Ficus indica [1], Ipomoea batatas [2], Nephelium lappaceum [3], Melia azedarach [4], Artemisia herba-alba [4], Mukia maderaspatana [5], Cannabis sativa [6], Tridax procumbens [7], Hyphaene thebaica [8], Callostemon viminalis [9] and  Rhamnus virgata [10] were reported for the synthesis of Cr2O3 NPs. SPR obtained in the range of 250–450 nm for the nanoparticles confirmed the synthesis of Cr2O3 NPs from its precursor. The average crystallite sizes of Cr2O3 NPs were in the range of 3 to 100nm which were calculated from XRD datas. The phytogenic synthesized Cr2O3 NPs exhibited excellent antileishmanial activity, antioxidant potential, anticancer activity, antiviral property, antifungal activity and antibacterial activity.

How to Cite

S, A. D., & P, R. (2021). Phytogenic synthesis of Cr2O3 nanoparticles using plant extract. SPAST Abstracts, 1(01). Retrieved from https://spast.org/techrep/article/view/1251
Abstract 113 |

Article Details

Keywords

Cr2O3 NPs, phytogenic synthesis, antioxidant potential, anticancer activity, antiviral property

References
[1] M.G. Tsegay, H.G. Gebretinsae, Z.Y. Nuru, Mater. Today: Proceso (2020), https://doi.org/10.1016/j.matpr.2020.05.503.
[2] J. Sackey, R. Morad, A.K.H. Bashir, L. Kotsedi, C. Kaonga, M. Maaza, J. Alloys Compd. 850, 156671 (2021).
https://doi.org/10.1016/j.jallcom.2020.156671.
[3] M. Isacfranklin, F. Ameen, G. Ravi, R. Yuvakkumar, S.I. Hong, D. Velauthapillai, M. Thambidurai, C. Dang, Ceram. Int. 46 (12), 19890–19895 (2020).
https://doi.org/10.1016/j.ceramint.2020.05.050.
[4] O.M. Kotb, F.M. Abd El-Latif, A.R. Atawia, S.S. Saleh, S.F. El-Gioushy, Asian J. Biotech. Biores. Tech. 22–30 (2020).
https://doi.org/10.9734/ajb2t/2020/v6i230077.
[5] S. Ananda, N.M.M. Gowda, Mod. Res. Catal. 2 (4), 127 (2013).
https://doi.org/10.4236/mrc.2013.24018.
[6] U.R. Sharma, N. Sharma, Bioint. Res. App. Chem. 11 (1), 8402–8412 (2021).
https://doi.org/10.33263/BRIAC111.84028412.
[7] C. Ramesh, K. Mohan Kumar, N. Latha, V. Ragunathan, Curr. Nanosci. 8 (4), 603–607 (2012). https://doi.org/10.2174/157341312801784366.
[8] H.E. Ahmed Mohamed, S. Afridi, A.T. Khalil, T. Zohra, M. Ali, M.M. Alam, A. Ikram, Z.K. Shinwari, M. Maaza, Nanomedicine 15 (17), 1653–1669 (2020).
https://doi.org/10.2217/nnm-2020-0129.
[9] D. Hassan, A.T. Khalil, A.R. Solangi, A. El-Mallul, Z.K. Shinwari, M. Maaza, Appl. Organomet. Chem. 33 (8), 5041(2019).
https://doi.org/10.1002/aoc.5041.
[10] J. Iqbal, B.A. Abbasi, A. Munir, S. Uddin, S. Kanwal, T. Mahmood, Microsc. Res. Tech. 83 (6), 706–719 (2020).
https://doi.org/10.1002/jemt.23460.
Section
GM2- Microsystems & Nanotechnology

Most read articles by the same author(s)