Study of structural, electronic, magnetic, and thermodynamic Properties of NdFeSi compound used density functional theory (DFT)

Main Article Content

Article Sidebar

Published Sep 14, 2021
Anuj Kumar


In this present research work, we have explored the electronic, magnetic, and thermal behavior of rare earth inter-metallic material NdFeSi by DFT utilizing the idea of the FPAPW+LO technique. We have investigated structural and electronic properties of NdFeSi material, we get some information about lattice constant, bulk modules, derivative  of bulk modulus and band diagrams, total and partial density of states (TDOS and PDOS), respectively,  and which is useful for research point of view. NdFeSi material is like as CeFeSi type tetragonal crystal structure and space group p4/nmm. The magnetic properties of the material are due to Neodymium f-orbital electrons. Temperature and pressure-dependent thermal behavior have been investigated. We have calculated the all parameters perfect match with the experimental and theoretical data.

How to Cite

Kumar, A. (2021). Study of structural, electronic, magnetic, and thermodynamic Properties of NdFeSi compound used density functional theory (DFT). SPAST Abstracts, 1(01). Retrieved from
Abstract 3 |

Article Details


Electronic, Intermetallic, Density of state, DFT

[1] Gschneidner, K., Russell, A., Pecharsky, A. Nature Mater 2, 587–591 (2003)
[2] P. Villars and L. D. Calvert. Pearsons’s Handbook of Crysallographic Data for Intermetallic Compounds.American Society or Metals: Materials Park, OH 44073; desk edition, (1997).
[3] M. L. Fornasini and F. Merlo, J. Alloys Compd. 219 63–68 (1995).
[4] S A Wolf Science 294 1488 (2001)
[5] Asadabadi, S. Jalali and Cottenier, S. and Akbarzadeh, H. and Saki, R. and Rots, M.Phys. Rev. B 66 195103 (2002)
[6] R. Welter, G. Venturini and B. Malaman, Journal of Alloys and Compounds 189 49-58 (1992).
[7] D J Singh and L Nordstrom Plane Waves Pseudo Potentials and the LAPW Method (New York: Springer)
[8] K. Schwarz, DFT calculations of solids with LAPW and WIEN2k , J. Solid State Chemistry 176 319 (2003).
[9] P Blaha, K Schwarz, G K H Madsen, D Kuasnicka and J Luitz WIEN2k An Augmented Plane Wave-Local
Orbitals Program for Calculating Crystal Properties K. Schwarz Technical Universitat Wien Austria. ISBN: 3-
9501031-1-2 (2001)
[10] Otero-de-la-Roza, A. & Abbasi-Pérez, David & Luaña, Víctor, GIBBS2: A new version of the
quasiharmonic model code. II. Models for solid-state thermodynamics, features and implementation. Computer
Physics Communications. 182. 2232-2248. 10.1016/j.cpc.2011.05.009, (2011).
[11] R. Welter, G. Venturini and B. Malaman, E. Ressouche, Journal of Alloys and Compounds 202 165-
172 (1993)
[12] A. Guzik, J. Alloys Compd 423 40-42 (2006)
[13] K. Schwarz, J. Solid State Chemistry 176 319 (2003)
[14] P. Blaha and K. Schwarz and P. Sorantin and S.B. Trickey Computer Physics Communications 59 399 (1990)
[15] J. P. Perdew, K. Burke, and M. Ernzerhof Phys. Rev. Lett. 77 3865 (1997)
[16] P. T. Wedepohl, Solid State Communications 10 947 (1971)
[17] K. Momma and F. Izumi Journal of Applied Crystallography 44 1272-1276 (2011).
[18] Hiroyasu KIDO and Takeshi HOSHIKAWA and Masahiko TAGAMI and Masahiko SHIMADA and Mitsue KOIZUMI Journal of the Ceramic Association, Japan 94 242-245 (1986)
NS1: Physics