5-Fluorouracil induced chemoresistance in colorectal cancer and the role of bioactive molecules in chemosensitization

Main Article Content

Article Sidebar

Published Sep 14, 2021
Miguela Min Navis Kumar

Abstract

Colon cancer is rated third in most diagnosed. The death rate due to colon cancer is estimated as 8% that is 608000 in approximation thus; around the world, it stands second in deaths due to cancer. By the year 2040, it is believed that a population of more than 1.5 crores will be in a need to undergo chemotherapy each year. The Preferred choice of treatment for benign to metastasis colon cancer includes chemotherapy but its use is limited by chemoresistance. The widely used drug of choice for treating cancers like colon, esophageal, stomach, pancreatic, cervical, and breast include 5-fluorouracil which is an antimetabolite that prevents cell proliferation and induces cytotoxic death. The major constraint of 5-FU is chemoresistance by overexpression of thymidylate synthase (TS), c- Yes/YAP, GLI 1, COX 2, β1 integrin, downregulation of p53, activation of MMR system, and initiation of cancer stem cells development. Chemoresistance by 5 FU can be attenuated by cotreating 5FU with natural bioactive compounds such as resveratrol, scutellarin, kaempferol, quercetin, and genistein that helps in sensitizing the resistance offered by tumor cells during chemotherapy. Since these compounds are less toxic and effective in presenting antitumor effects, it draws the attention of cancer researchers to build a better treatment for colon cancer.

How to Cite

Navis Kumar, M. M. (2021). 5-Fluorouracil induced chemoresistance in colorectal cancer and the role of bioactive molecules in chemosensitization . SPAST Abstracts, 1(01). Retrieved from https://spast.org/techrep/article/view/309
Abstract 11 |

Article Details

Keywords

5-Fluorouracil, Chemoresistance, Chemosensitization, Colon cancer, Natural bio-active compounds

References
1. Parker SL, Tong T, Bolden S, Wingo PA. Cancer statistics, 1996. CA Cancer J Clin. 1996 Jan-Feb;46(1):5-27. doi:10.3322/canjclin.46.1.5. PMID: 8548526.
2. Ferlay J, Soerjomataram I, Dikshit R, Eser S, Mathers C, Rebelo M, Parkin DM, Forman D, Bray F. Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012. Int J Cancer. 2015 Mar 1;136(5):E359-86. doi: 10.1002/ijc.29210. Epub 2014 Oct 9. PMID: 25220842.
3. Shishodia, S., Chaturvedi, M. M., & Aggarwal, B. B. (2007). Role of Curcumin in Cancer Therapy. Current Problems in Cancer, 31(4), 243–305. https://doi.org/10.1016/j.currproblcancer.2007.04.001
4. Wolk, A. (2017). Potential health hazards of eating red meat. Journal of Internal Medicine, 281(2), 106–122. https://doi.org/10.1111/joim.12543
5. Bardou, M., Barkun, A. N., & Martel, M. (2013). Republished: Obesity and colorectal cancer. Postgraduate Medical Journal, 89(1055), 519–533. https://doi.org/10.1136/postgradmedj-2013-304701rep
6. Arnold, M., Sierra, M. S., Laversanne, M., Soerjomataram, I., Jemal, A., & Bray, F. (2017). Global patterns and trends in colorectal cancer incidence and mortality. Gut, 66(4), 683–691. https://doi.org/10.1136/gutjnl-2015-310912
7. Friedl, P., & Gilmour, D. (2009). Collective cell migration in morphogenesis, regeneration and cancer. Nature Reviews Molecular Cell Biology, 10(7), 445–457. https://doi.org/10.1038/nrm2720
8. Hanahan, D. (2014). Rethinking the war on cancer. The Lancet, 383(9916), 558–563. https://doi.org/10.1016/S0140-6736(13)62226-6
9. Grem, J. L. (2000). 5-Fluorouracil: Forty-plus and still ticking. A review of its preclinical and clinical development. Investigational New Drugs, 18(4), 299–313. https://doi.org/10.1023/A:1006416410198
10. Zhang, N., Yin, Y., Xu, S. J., & Chen, W. S. (2008). 5-Fluorouracil: Mechanisms of resistance and reversal strategies. Molecules, 13(8), 1551–1569. https://doi.org/10.3390/molecules13081551
11. Chu, E., Callender, Æ. M. A., Farrell, Æ. M. P., & Schmitz, J. C. (2003). Thymidylate synthase inhibitors as anticancer agents: from bench to bedside. Cancer Chemother Pharmacol (2003) 52 (Suppl 1): S80–S89.doi: 10.1007/s00280-003-0625-9.
12. Touroutoglou N, Pazdur R. Thymidylate synthase inhibitors. Clin Cancer Res. 1996 Feb;2(2):227-43. PMID: 9816165.
13. Horie, N., Takeishi, K., Aiba, H., Oguro, K. & Hojo, H. Functional Analysis and DNA Polymorphism of the Tandemly Repeated Sequences in the 5′-Terminal Regulatory Region of the Human Gene for Thymidylate Synthase. Cell Struct. Funct. 20(3), 191–197 (1995)
14. Santi DV, McHenry CS, Sommer H. Mechanism of interaction of thymidylate synthetase with 5-fluorodeoxyuridylate. Biochemistry. 1974 Jan 29;13(3):471-81. doi: 10.1021/bi00700a012. PMID: 4203910.
15. Reya T, Morrison SJ, Clarke MF, Weissman IL. Stem cells, cancer, and cancer stem cells. Nature. 2001 Nov 1;414(6859):105-11. doi: 10.1038/35102167. PMID: 11689955.
16. Yu F, Yao H, Zhu P, Zhang X, Pan Q, Gong C, Huang Y, Hu X, Su F, Lieberman J, Song E. let-7 regulates self renewal and tumorigenicity of breast cancer cells. Cell. 2007 Dec 14;131(6):1109-23. doi: 10.1016/j.cell.2007.10.054. PMID: 18083101.
17. Touil Y, Igoudjil W, Corvaisier M, Dessein AF, Vandomme J, Monté D, Stechly L, Skrypek N, Langlois C, Grard G, Millet G, Leteurtre E, Dumont P, Truant S, Pruvot FR, Hebbar M, Fan F, Ellis LM, Formstecher P, Van Seuningen I, Gespach C, Polakowska R, Huet G. Colon cancer cells escape 5FU chemotherapy-induced cell death by entering stemness and quiescence associated with the c-Yes/YAP axis. Clin Cancer Res. 2014 Feb 15;20(4):837-46. doi: 10.1158/1078-0432.CCR-13-1854. Epub 2013 Dec 9. PMID: 24323901; PMCID: PMC4387277.
18. Jaggupilli, A. & Elkord, E. Significance of CD44 and CD24 as cancer stem cell markers: An enduring ambiguity. Clinical and Developmental Immunology vol. 2012 (2012). doi:10.1155/2012/708036
19. Guo X, Goessl E, Jin G, Collie-Duguid ES, Cassidy J, Wang W, O'Brien V. Cell cycle perturbation and acquired 5-fluorouracil chemoresistance. Anticancer Res. 2008 Jan-Feb;28(1A):9-14. Erratum in: Anticancer Res. 2008 Mar-Apr;28(2b):1439. Jin, Gang [added]. PMID: 18383818.
20. Boyer, J., Mclean, E. G., Aroori, S., Wilson, P., Mcculla, A., Carey, P. D., Longley, D. B., & Johnston, P. G. (2004). Characterization of p53 Wild-Type and Null Isogenic Colorectal Cancer Cell Lines Resistant to 5-Fluorouracil, Oxaliplatin, and Irinotecan. 10, 2158–2167.
21. Khoury, K., & Dömling, A. (2012). P53 mdm2 inhibitors. Current pharmaceutical design, 18(30), 4668–4678. https://doi.org/10.2174/138161212802651580
22. Bunz F, Hwang PM, Torrance C, Waldman T, Zhang Y, Dillehay L, Williams J, Lengauer C, Kinzler KW, Vogelstein B. Disruption of p53 in human cancer cells alters the responses to therapeutic agents. J Clin Invest. 1999 Aug;104(3):263-9. doi: 10.1172/JCI6863. PMID: 10430607; PMCID: PMC408422.
23. An Q, Robins P, Lindahl T, Barnes DE. 5-Fluorouracil incorporated into DNA is excised by the Smug1 DNA glycosylase to reduce drug cytotoxicity. Cancer Res. 2007 Feb 1;67(3):940-5. doi: 10.1158/0008-5472.CAN-06-2960. PMID: 17283124.
24. Zhang, N., Yin, Y., Xu, S. J., & Chen, W. S. (2008). 5-Fluorouracil: Mechanisms of resistance and reversal strategies. Molecules, 13(8), 1551–1569. https://doi.org/10.3390/molecules13081551
25. Drummond JT, Anthoney A, Brown R, Modrich P. Cisplatin and adriamycin resistance are associated with MutLalpha and mismatch repair deficiency in an ovarian tumor cell line. J Biol Chem. 1996 Aug 16;271(33):19645-8. doi: 10.1074/jbc.271.33.19645. PMID: 8702663.
26. Shakibaei M, Mobasheri A, Lueders C, Busch F, Shayan P, Goel A. Curcumin enhances the effect of chemotherapy against colorectal cancer cells by inhibition of NF-κB and Src protein kinase signaling pathways. PLoS One. 2013;8(2):e57218. doi:10.1371/journal.pone.0057218. Epub 2013 Feb 22. PMID: 23451189; PMCID: PMC3579779.
27. Chandrasekharan, N., Simmons, D.L. The cyclooxygenases. Genome Biol 5, 241 (2004). https://doi.org/10.1186/gb-2004-5-9-241
28. Sobolewski C, Cerella C, Dicato M, Ghibelli L, Diederich M. The role of cyclooxygenase-2 in cell proliferation and cell death in human malignancies. Int J Cell Biol. 2010;2010:215158. doi: 10.1155/2010/215158. Epub 2010 Mar 17. PMID: 20339581; PMCID: PMC2841246.
29. Greenhough A, Smartt HJ, Moore AE, Roberts HR, Williams AC, Paraskeva C, Kaidi A. The COX-2/PGE2 pathway: key roles in the hallmarks of cancer and adaptation to the tumour microenvironment. Carcinogenesis. 2009 Mar;30(3):377-86. doi: 10.1093/carcin/bgp014. Epub 2009 Jan 9. PMID: 19136477.
30. Koki AT, Leahy KM, Masferrer JL. Potential utility of COX-2 inhibitors in chemoprevention and chemotherapy. Expert Opin Investig Drugs. 1999 Oct;8(10):1623-1638. doi: 10.1517/13543784.8.10.1623. PMID: 11139815.
31. Du B, Jiang L, Xia Q, Zhong L. Synergistic inhibitory effects of curcumin and 5-fluorouracil on the growth of the human colon cancer cell line HT-29. Chemotherapy. 2006;52(1):23-8. doi: 10.1159/000090238. Epub 2005 Dec 9. PMID: 16340194.
32. Lacerda L, Pusztai L, Woodward WA. The role of tumor initiating cells in drug resistance of breast cancer: Implications for future therapeutic approaches. Drug Resist Updat. 2010 Aug-Oct;13(4-5):99-108. doi: 10.1016/j.drup.2010.08.001. Epub 2010 Aug 23. PMID: 20739212.
33. Huang C, Chen Z, Yang C, Chen L, Lai C, Zhang Y, Yuan W, Jeong JH. Combinational inhibition of EGFR and YAP reverses 5-Fu resistance in colorectal cancer. J Cancer. 2020 Jul 11;11(18):5432-5439. doi: 10.7150/jca.44775. PMID: 32742490; PMCID: PMC7391200.
34. Niu Z, Xu P, Zhu D, Tang W, Ji M, Lin Q, Liu T, Ren L, Wei Y, Xu J. Integrin β1 mediates 5-fluorouracil chemoresistance under translational control of eIF4E in colorectal cancer. Int J Clin Exp Pathol. 2018 Oct 1;11(10):4771-4783. PMID: 31949552; PMCID: PMC6962897.
35. Naci, D., Vuori, K., & Aoudjit, F. (2015). Alpha2beta1 integrin in cancer development and chemoresistance. Seminars in Cancer Biology, 1–9. https://doi.org/10.1016/j.semcancer.2015.08.004
36. Zahreddine HA, Culjkovic-Kraljacic B, Assouline S, Gendron P, Romeo AA, Morris SJ, Cormack G, Jaquith JB, Cerchietti L, Cocolakis E, Amri A, Bergeron J, Leber B, Becker MW, Pei S, Jordan CT, Miller WH, Borden KL. The sonic hedgehog factor GLI1 imparts drug resistance through inducible glucuronidation. Nature. 2014 Jul 3;511(7507):90-3. doi: 10.1038/nature13283. Epub 2014 May 28. PMID: 24870236; PMCID: PMC4138053.
37. Ruiz i Altaba A. Gli proteins encode context-dependent positive and negative functions: implications for development and disease. Development. 1999 Jun;126(14):3205-16. PMID: 10375510.
38. Zhang, L., Song, R., Gu, D., Zhang, X., Yu, B., Liu, B., & Xie, J. (2017). The role of GLI1 for 5 ‑ Fu resistance in colorectal cancer. Cell & Bioscience, 1–9. https://doi.org/10.1186/s13578-017-0145-7
39. Peer E, Tesanovic S, Aberger F. Next-Generation Hedgehog/GLI Pathway Inhibitors for Cancer Therapy. Cancers (Basel). 2019 Apr 15;11(4):538. doi: 10.3390/cancers11040538. PMID: 30991683; PMCID: PMC6520835.
40. Singh CK, George J, Ahmad N. Resveratrol-based combinatorial strategies for cancer management. Ann N Y Acad Sci. 2013 Jul;1290(1):113-21. doi: 10.1111/nyas.12160. PMID: 23855473; PMCID: PMC3713511.
41. Mertens-Talcott SU, Percival SS. Ellagic acid and quercetin interact synergistically with resveratrol in the induction of apoptosis and cause transient cell cycle arrest in human leukemia cells. Cancer Lett. 2005 Feb 10;218(2):141-51. doi: 10.1016/j.canlet.2004.06.007. PMID: 15670891.
42. Fulda S, Debatin KM. Sensitization for anticancer drug-induced apoptosis by the chemopreventive agent resveratrol. Oncogene. 2004 Sep 2;23(40):6702-11. doi: 10.1038/sj.onc.1207630. PMID: 15273734.
43. Thao do T, Phuong do T, Hanh TT, Thao NP, Cuong NX, Nam NH, Minh CV. Two new neoclerodane diterpenoids from Scutellaria barbata D. Don growing in Vietnam. J Asian Nat Prod Res. 2014;16(4):364-9. doi: 10.1080/10286020.2014.882912. Epub 2014 Feb 5. PMID: 24498964.
44. Chan JY, Tan BK, Lee SC. Scutellarin sensitizes drug-evoked colon cancer cell apoptosis through enhanced caspase-6 activation. Anticancer Res. 2009 Aug;29(8):3043-7. PMID: 19661313.
45. Chen Y, Yang L, Lee TJ. Oroxylin A inhibition of lipopolysaccharide-induced iNOS and COX-2 gene expression via suppression of nuclear factor-kappaB activation. Biochem Pharmacol. 2000 Jun 1;59(11):1445-57. doi: 10.1016/s0006-2952(00)00255-0. PMID: 10751555.
46. HaJun, ZhaoLi, ZhaoQing, YaoJing, ZhuBin-Bin, LuNa, KeXue, YangHui-Ying, LiZhiyu, YouQi-Dong, and GuoQing-Long. Oroxylin A improves the sensitivity of HT-29 human colon cancer cells to 5-FU through modulation of the COX-2 signaling pathway. Biochemistry and Cell Biology. 90(4): 521-531. https://doi.org/10.1139/o2012-005
47. Redondo-Blanco, S., Fernández, J., Gutiérrez-Del-Río, I., Villar, C. J., & Lombó, F. (2017). New Insights toward Colorectal Cancer Chemotherapy Using Natural Bioactive Compounds. Frontiers in pharmacology, 8, 109. https://doi.org/10.3389/fphar.2017.00109
48. Lee, H. S., Cho, H. J., Kwon, G. T., & Park, J. H. (2014). Kaempferol Downregulates Insulin-like Growth Factor-I Receptor and ErbB3 Signaling in HT-29 Human Colon Cancer Cells. Journal of cancer prevention, 19(3), 161–169. https://doi.org/10.15430/JCP.2014.19.2.161
49. Cho HJ, Park JH. Kaempferol Induces Cell Cycle Arrest in HT-29 Human Colon Cancer Cells. J Cancer Prev. 2013 Sep;18(3):257-63. doi: 10.15430/jcp.2013.18.3.257. PMID: 25337553; PMCID: PMC4189462.
50. Yoshida T, Konishi M, Horinaka M, Yasuda T, Goda AE, Taniguchi H, Yano K, Wakada M, Sakai T. Kaempferol sensitizes colon cancer cells to TRAIL-induced apoptosis. Biochem Biophys Res Commun. 2008 Oct 10;375(1):129-33. doi: 10.1016/j.bbrc.2008.07.131. Epub 2008 Aug 3. PMID: 18680719.
51. Ranelletti, F. O., Maggiano, N., Serra, F. G., Ricci, R., Larocca, L. M., Lanza, P., Scambia, G., Fattorossi, A., Capelli, A., & Piantelli, M. (2000). Quercetin inhibits p21-RAS expression in human colon cancer cell lines and in primary colorectal tumors. International journal of cancer, 85(3), 438–445.
52. Psahoulia, F. H., Drosopoulos, K. G., Doubravska, L., Andera, L., and Pintzas, A. (2007). Quercetin enhances TRAIL-mediated apoptosis in colon cancer cells by inducing the accumulation of death receptors in lipid rafts. Mol. Cancer Ther. 6, 2591–2599. https://doi.org/10.1158/1535-7163.MCT-07-0001
53. Yang L, Liu Y, Wang M, Qian Y, Dong X, Gu H, Wang H, Guo S, Hisamitsu T. Quercetin-induced apoptosis of HT-29 colon cancer cells via inhibition of the Akt-CSN6-Myc signaling axis. Mol Med Rep. 2016 Nov;14(5):4559-4566. doi: 10.3892/mmr.2016.5818. Epub 2016 Oct 10. PMID: 27748879; PMCID: PMC5101998.
54. Samuel, Temesgen. “Quercetin as an enhancer of the efficacy of 5-FU in mouse models of colon cancer”. 2017. https://grantome.com/grant/NIH/SC3-GM109314-02
55. Marín L, Miguélez EM, Villar CJ, Lombó F. Bioavailability of dietary polyphenols and gut microbiota metabolism: antimicrobial properties. Biomed Res Int. 2015;2015:905215. doi: 10.1155/2015/905215. Epub 2015 Feb 23. PMID: 25802870; PMCID: PMC4352739.
56. Yu Z, Li W, Liu F. Inhibition of proliferation and induction of apoptosis by genistein in colon cancer HT-29 cells. Cancer Lett. 2004 Nov 25;215(2):159-66. doi: 10.1016/j.canlet.2004.06.010. PMID: 15488634.
57. Luo Y, Wang SX, Zhou ZQ, Wang Z, Zhang YG, Zhang Y, Zhao P. Apoptotic effect of genistein on human colon cancer cells via inhibiting the nuclear factor-kappa B (NF-κB) pathway. Tumour Biol. 2014 Nov;35(11):11483-8. doi: 10.1007/s13277-014-2487-7. Epub 2014 Aug 16. PMID: 25128065.
58. Xiao X., Liu Z., Wang R., Wang J., Zhang S., Cai X., Wu K., Bergan R. C., Xu L., Fan D. Genistein suppresses FLT4 and inhibits human colorectal cancer metastasis. Oncotarget. 2015; 6: 3225-3239. Retrieved from https://www.oncotarget.com/article/3064/text/
59. Hwang JT, Ha J, Park OJ. Combination of 5-fluorouracil and genistein induces apoptosis synergistically in chemo-resistant cancer cells through the modulation of AMPK and COX-2 signaling pathways. Biochem Biophys Res Commun. 2005 Jul 1;332(2):433-40. doi: 10.1016/j.bbrc.2005.04.143. PMID: 15896711.
Section
NB:Biology