A Highly uniform resistive switching achieved in Pt/SrTiO3/Pt memristive devices through engineering bottom interface article

Main Article Content

Article Sidebar

Published Sep 11, 2021
Jamal Shaibo

Abstract

SrTiO3 (STO) is a model switching material for valence change memristive cells; there exists general consensus that the resistive switching can be attributed to the migration of oxygen vacancies between metal electrodes and STO. However, most of STO-based devices are fabricated on Nb-doped STO substrates, which is not compatible with the current CMOS technology. Herein, by using pulsed laser deposition (PLD) technique and engineering the bottom interface through pre-annealing of the Pt electrode in O2 atmosphere, high-quality single-crystal STO films are successfully deposited on Si wafers. Moreover, destructive electroforming process is avoided, which results in volatile analog resistive switching behavior with device yield > 98%. Moreover, tunable synaptic functions, such as the short-term plasticity and the paired-pulse facilitation, are achieved in the devices.

How to Cite

Shaibo, J. (2021). A Highly uniform resistive switching achieved in Pt/SrTiO3/Pt memristive devices through engineering bottom interface : article . SPAST Abstracts, 1(01). Retrieved from https://spast.org/techrep/article/view/241
Abstract 32 |

Article Details

Keywords

single-crystal STO film, Si substrates, uniform resistive memory, engineering bottom interface, artificial synapse

References
[1] R. Waser, M. Aono, “Nanoionics-based resistive switching memories”, Nat. Mater., 6, 833, (2007).
[2] Q. F. Xia, W. Robinett, M. W. Cumbie, N. Banerjee, T. J. Cardinali, J. J. Yang, W. Wu, X. M. Li, W. M. Tong, D. B. Strukov, G. S. Snider, G. Medeiros-Ribeiro, R. S. Williams, “Memristor-CMOS hybrid integrated circuits for reconfigurable logic”, Nano lett., 9, 3640, (2009).
[3] J. Borghetti, G. S. Snider, P. J. Kuekes, J. J. Yang, D. R. Stewart, R. S. Williams, “Memristive’ switches enable ‘stateful’ logic operations via material implication”, Nature, 464, 873, (2010).
[4] M. Prezioso, F. Merrikh-Bayat, B. D. Hoskins, G. C. Adam, K. K. Likharev, D. B. Strukov, “Training and operation of an integrated neuromorphic network based on metal-oxide memristors”, Nature, 521, 61, (2015).
[5] G. Indiveri, B. Linares-Barranco, R. Legenstein, G. Deligeorgis, T. Prodromakis, “Integration of nanoscale memristor synapses in neuromorphic computing architectures”, Nanotechnology, 24, 384010, (2013).
[6] J. Shaibo, R. Yang, Z. Wang, H.-M. Huang, J. Xiong, X. Guo, “Electric field control of resistive switching and magnetization in epitaxial LaBaCo2O5+δ thin films”, Phys. Chem. Chem. Phys., 2019, 21, 8843.
[7] G. Liu, Ch. Wang, W. Zhang , L. Pan , Ch. Ch. Zhang , X. Yang , F. Fan , Y. Chen , and R.-W. Li, “Organic Biomimicking Memristor for Information Storage and Processing Applications”, Adv. Electron. Mater., 2, 1500298, (2016).
[8] M. Hasan, R. Dong, H. Choi, J. Yoon, Ju-bong Park, Dong-joon Seong, H. Hwang, “Dependence of the Metal Electrode and Improved Pulse Switching Speed of La0.7Ca0.3MnO3 as a Resistance Change Memory Device”, J. Electrochem. Soc., 156, H239, (2009).
[9] S. K. Vishwanath, S. Jeon, J. Kim, “Polymer-Assisted Solution Processing of TiO2 Thin Films for Resistive-Switching Random Access Memory”, J. Electrochem. Soc., 164, H21, (2007).
[10] J. Park, H. Song, E. K. Lee, J. H. Oh, K. Yonga, “ZnO Nanowire Based Photoelectrical Resistive Switches for Flexible Memory”, J. Electrochem. Soc., 162, H713, (2015).
[11] N. S.K. Gunda, S. H. Guatam, and S. K. Mitra, “Editors' Choice—Artificial Intelligence Based Mobile Application for Water Quality Monitoring”, J. Electrochem. Soc., 166, B3031, (2019).
[12] A. C. Torrezan, J. P. Strachan, G. Medeiros-Ribeiro, R. S. Williams, “Sub-nanosecond switching of a tantalum oxide memristor” Nanotechnology, 22, 485203, (2011).
[13] S. Gao, F. Zeng, C. Chen, G. S. Tang, Y. S. Lin, Z. F. Zheng, C. Song, F. Pan, “Conductance quantization in a Ag filament-based polymer resistive memory:, Nanotechnology, 24, 335201, (2013).
[14] H. Hönigschmid, M. Angerbauer, S. Dietrich, M. Dimitrova, D. Gogl, C. Liaw, M. Markert, R. Symanczyk, L. Altimime, S. Bournat, Honolulu, Hawaii, June, 13, (2006).
[15] V. V. Zhirnov, R. Meade, R. K. Cavin, G. Sandhu, “Scaling limits of resistive memories”, Nanotechnology, 22, 254027, (2011).
[16] B. Chakrabarti, M. A. Lastras-Montano, G. Adam, M. Prezioso, B. Hoskins, M. Payvand, A. Madhavan, A. Ghofrani, L. Theogarajan, K. T. Cheng, D. B. Strukov, “A multiply-add engine with monolithically integrated 3D memristor crossbar/CMOS hybrid circuit”, Sci. Rep., 7, 42429, (2017).
[17] R. Waser, R. Dittmann, G. Staikov, K. Szot, “Redox-Based Resistive Switching Memories Nanoionic Mechanisms, Prospects, and Challenges”, Adv. Mater., 21, 2632, (2009).
[18] S. W. Michael Lübben, Rainer Waser, and Ilia Valov, “Processes and Effects of Oxygen and Moisture in Resistively Switching TaOx and HfOx”, Adv. Electron. Mater., 4, 1700458, (2018).
[19] C. Baeumer, C. Schmitz, A. Marchewka, D. N. Mueller, R. Valenta, J. Hackl, N. Raab, S. P. Rogers, M. I. Khan, S. Nemsak, M. Shim, S. Menzel, C. M. Schneider, R. Waser, R. Dittmann, “Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes”, Nat. Commun., 7, 12398, (2016).
[20] E. Mikheev, J. Hwang, A. P. Kajdos, A. J. Hauser, S. Stemmer, “Tailoring resistive switching in Pt/SrTiO3 junctions by stoichiometry control”, Sci. Rep., 5, 11079, (2015).
[21] E. Mikheev, B. D. Hoskins, D. B. Strukov, S. Stemmer, “Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions”, Nat. Commun., 5, 3990, (2014).
[22] F. Messerschmitt, M. Kubicek, J. L. M. Rupp, “How Does Moisture Affect the Physical Property of Memristance for Anionic–Electronic Resistive Switching Memories?”, Adv. Electron. Mater., 25, 5117, (2015).
[23] J. Xiong, R. Yang, J. Shaibo, H.-M. Huang, H.-K. He, W. Zhou, X. Guo, “Bienenstock, Cooper, and Munro Learning Rules Realized in Second Order Memristors with Tunable Forgetting Rate”, Adv. Electron. Mater., 29, 1807316, (2019).
[24] A. M. Carsten Funck, Christoph Bäumer, Peter C. Schmidt, Phillip Müller, Regina Dittmann, Manfred Martin, Rainer Waser, and Stephan Menzel, “A Theoretical and Experimental View on the Temperature Dependence of the Electronic Conduction through a Schottky Barrier in a Resistively Switching SrTiO3-Based Memory Cell”, Adv. Electron. Mater., 4, 1800062, (2018).
[25] C. Baeumer, N. Raab, T. Menke, C. Schmitz, R. Rosezin, P. Muller, M. Andre, V. Feyer, R. Bruchhaus, F. Gunkel, C. M. Schneider, R. Waser, R. Dittmann, “Verification of redox-processes as switching and retention failure mechanisms in Nb:SrTiO3/metal devices”, Nanoscale, 8, 13967, (2016).
[26] D. Cooper, C. Baeumer, N. Bernier, A. Marchewka, C. La Torre, R. E. Dunin-Borkowski, S. Menzel, R. Waser, R. Dittmann, “Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM”, Adv. Mater., 29, 1700212, (2017).
[27] T. Heisig, C. Baeumer, U. N. Gries, M. P. Mueller, C. La Torre, M. Luebben, N. Raab, H. C. Du, S. Menzel, D. N. Mueller, C. L. Jia, J. Mayer, R. Waser, I. Valov, R. A. De Souza, R. Dittmann, “Oxygen Exchange Processes between Oxide Memristive Devices and Water Molecules”, Adv. Mater., 30, 1800957, (2018).
[28] N. Banerjee, G. Koster, G. Rijnders, “Submicron patterning of epitaxial PbZr0.52Ti0.48O3 heterostructures”, Appl. Phys. Lett., 102, 142909, (2013).
[29] D. Lu, D. J. Baek, S. S. Hong, L. F. Kourkoutis, Y. Hikita, H. Y. Hwang, “Synthesis of freestanding single-crystal perovskite films and heterostructures by etching of sacrificial water-soluble layers”, Nat. Mater., 15, 1255, (2016).
[30] M. Choi, A. Posadas, R. Dargis, C. K. Shih, A. A. Demkov, D. H. Triyoso, N. D. Theodore, C. Dubourdieu, J. Bruley, J. Jordan-Sweet, “Strain relaxation in single crystal SrTiO3 grown on Si (001) by molecular beam epitaxy”, J. Appl. Phys., 111, 064112, (2012).
[31] J. W. Reiner, A. M. Kolpak, Y. Segal, K. F. Garrity, S. Ismail-Beigi, C. H. Ahn, F. J. Walker, “Crystalline oxides on silicon”, Adv. Mater., 22, 2919, (2010).
[32] G. Niu, G. Saint-Girons, B. Vilquin, G. Delhaye, J. L. Maurice, C. Botella, Y. Robach, G. Hollinger, “Molecular beam epitaxy of SrTiO3 on Si (001): Early stages of the growth and strain relaxation”, J. Appl. Phys., 95, 062902, (2009).
[33] H. Li, X. Hu, Y. Wei, Z. Yu, X. Zhang, R. Droopad, A. A. Demkov, J. Edwards, K. Moore, W. Ooms, J. Kulik, P. Fejes, “Two-dimensional growth of high-quality strontium titanate thin films on Si”, J. Appl. Phys., 93, 4521, (2003).
[34] J. Shaibo, R. Yang, Z. Wang, H.-M. Huang, H.-K. He, Q. Zhang, X. Guo, “Structure and magnetic properties of highly oriented LaBaCo2O5+δ films deposited on Si wafers with Pt/Ti buffer layer”, Phys. Chem. Chem. Phys., 21, 22390, (2019).
[35] C.-C. Leu, “Nanocrystalline Pt interfacial layer formed by stress in a SrBi2Ta2O9–Pt–Ti ferroelectric capacitor”, J. Mater. Res., 22, 1718, (2007).
[36] M. DiBattista, J. W. Schwank, “Determination of diffusion in polycrystalline platinum thin films”, J. Appl. Phys., 86, 4902, (1999).
[37] J. J. Yang, J. P. Strachan, Q. Xia, D. A. A. Ohlberg, P. J. Kuekes, R. D. Kelley, W. F. Stickle, D. R. Stewart, G. Medeiros-Ribeiro, R. S. Williams, “Diffusion of adhesion layer metals controls nanoscale memristive switching”, Adv. Mater., 22, 4034, (2010).
[38] D. H. Shin, Y. M. Shin, J. H. Kim, B. T. Ahn, K. H. Yoon, “Control of the Preferred Orientation of Cu(In,Ga)Se2 Thin Film by the Surface Modification of Mo Film”, J. Electrochem. Soc., 159, B1, (2011).
[39] Y. Cao, Zh. Zeng, Y. Liu, X. Zhang, Ch. Shen, X Wang,. Zh. Gan, H. Wu, Zh. Hua, “Electrodeposition and Thermoelectric Characterization of (00l) Oriented Bi2Te3 Thin Films on Silicon with Seed Layer”, J. Electrochem. Soc., 160, D565, (2013).
[40] T. Yan, Y. C. Huang, Y. Ch. Hou, L. Chang, “Epitaxial Growth and Microstructural Evolution of Nickel Electrodeposited on a Polycrystalline Copper Substrate”, J. Electrochem. Soc., 165, D743, (2018).
[41] C. C. Leu, C. H. Chien, C. C. Hsu, C. F. Leu, F. Y. Hsu, C. T. Hu, “Pt Nanocrystalline Interfacial Layer in an SBT/Pt/Ti Ferroelectric Capacitor”, Electrochem. Solid St., 7, F67, (2004).
[42] T. Shi, X. B. Yin, R. Yang, X. Guo, “Pt/WO 3 /FTO memristive devices with recoverable pseudo electroforming for time-delay switches in neuromorphic computing”, Phys. Chem. Chem. Phys., 18, 9338, (2016).
[43] X.-B. Yin, Zh.-H. Tan, R. Yang, X. Guo, “Polarity Reversal in the Bipolar Switching of Anodic TiO2 Film”, J. Electrochem. Soc., 162, E271, (2015).
[44] A. Citri, R. C. Malenka, “Synaptic Plasticity: Multiple Forms, Functions, and Mechanisms”, Neuropsychopharmacol., 33, 18, (2008).
[45] R. S. Zucker, “Calcium- and activity-dependent synaptic plasticity”, Curr. Opin. Neurobiol., 9, 305, (1999).
[46] R. S. Zucker, W. G. Regehr, “Short-term synaptic plasticity”, Annu. Rev. Physiol., 64, 355, (2002).
[47] H.-K. He, R. Yang, W. Zhou, H.-M. Huang, J. Xiong, L. Gan, T.-Y. Zhai, X. Guo, “Photonic Potentiation and Electric Habituation in Ultrathin Memristive Synapses Based on Monolayer MoS2”, Small, 14, 1800079, (2018).
[48] C. Saviane, L. P. Savtchenko, G. Raffaelli, L. L. Voronin, E. Cherubini, “Frequency-dependent shift from paired-pulse facilitation to paired pulse depression at unitary CA3-CA3 synapses in the rat hippocampus”, J. Physiol.-London., 544, 469, (2002).
[49] L. Q. Zhu, C. J. Wan, L. Q. Guo, Y. Shi, Q. Wan, “Artificial synapse network on inorganic proton conductor for neuromorphic systems”, Nat. Commun., 5, 3158, (2014).
[50] Y. H. Liu, L. Q. Zhu, P. Feng, Y. Shi, Q. Wan, “Freestanding Artificial Synapses Based on Laterally Proton-Coupled Transistors on Chitosan Membranes”, Adv. Mater., 27, 5599, (2015).
[51] B. Pan, R. S. Zucker, “A General Model of Synaptic Transmission and Short-Term Plasticity”, Neuron, 62, 539, (2009).
[52] G. Q. Bi, M. M. Poo, “Synaptic modifications in cultured hippocampal neurons: dependence on spike timing, synaptic strength, and postsynaptic cell type”, J. Neurosci., 18, 10464, (1998).
Section
GM1: Materials