Useful Datasets and Very Recent Approach for Melanoma Image Classification

Authors

  • Eugenio Vocaturo University of Calabria
  • Ester Zumpano

Keywords:

Deep Learning, Multiple Instance Learning, Melanoma Detection.

Abstract

The growing incidence of skin cancers, coupled with low awareness among the population fuels interest in developing computer-assisted diagnostics solutions for skin cancer classification. A large number of data sets on skin lesions are publicly available and researchers have developed machine learning solutions to distinguish malignant from benign skin lesions aimed both to support the doctors and as mobile applications useful in self-diagnosis. The Computer Aided Diagnosis (CAD) systems are still in the very early stages of clinical application: in this review, we focus on the latest approaches used for image-based solutions for skin cancer diagnosis, highlighting the necessary future directions to improve these artificial intelligence systems.

References

http://gco.iarc.fr/today/explo

F. Bray, J. Ferlay, I. Soerjomataram, R.L. Siegel, L.A. Torre, A.

Jemal, Ca - Cancer J. Clin. 68, 394 (2018). http://dx.doi.org/10.3322/caac.21492

R. Sanghera and P. S. Grewal, “Dermatological symptom

assessment”, in Patient Assessment in Clinical Pharmacy, p.

–154, Springer, 2019.

G. Argenziano, G. Fabbrocini, P. Carli, V. De Giorgi, E.

Sammarco, and M. Delfino, Archives of Dermatology, 134,

, 1563(1998). https://doi.org/10.1001/archderm.134.12.1563

M. Goyal, "Artificial intelligence in dermatology," DermNet NZ – All about the skin- DermNet NZ. [Online]. Available: https://www.dermnetnz.org/topics/artificial- intelligence/.

T. Wurfl, F.C. Ghesu, V. Christlein, A. Maier, International Conf.on Medical Image Computing and Computer- Assisted Intervention, Springer, 432,(2016). https://doi.org/10.1007/978-3-319-46726-9_50

H.A. Daanen, F.B. Ter Haar, Displays, 34 270 (2013). https://doi.org/10.1016/j.displa.2013.08.011

T. Ching, et al., J. R. Soc. Interface, 15, (2018). https://doi.org/10.1098/rsif.2017.0387

H. Greenspan, and B. Van Ginneken, and R. M. Summers,

IEEE Trans. on Medical Imaging, 35, 1153 (2016). https://doi.org/10.1109/TMI.2016.2553401

B. J. Erickson, et al., Radiographics, 37, 505, (2017). https://doi.org/10.1148/rg.2017160130

J. K. Robinson and R. Turrisi, Archives of Dermatology, 142,

(2006). https://doi.org/10.1001/archderm.142.4.447

R. H. Johr, Clinics in Dermatology, 20, 240(2002). https://doi.org/10.1016/s0738-081x(02)00236-5

I. Zalaudek, et al., British Journ. of Derm., 154, 431(2006). https://doi.org/10.1111/j.1365-2133.2005.06983.x

M. E. Vestergaard and S. W. Menzies, Seminars in

Cutaneous Medicine and Surgery, 27, 32(2008). https://doi.org/10.1016/j.sder.2008.01.001

E. Vocaturo, E. Zumpano, and P. Veltri, International

Conference on Flexible Query Answering Systems, Springer, 374 (2019). https://doi.org/10.1007/978-3-030-

-4_34

E. Vocaturo, E. Zumpano, P. Veltri, IEEE International Conference on Bioinformatics and Biomedicine, 2117(2018). https://doi.org/10.1109/BIBM.2018.8621507

E. Vocaturo, and E. Zumpano, IEEE International Conference on Bioinformatics and Biomedicine, 2318(2020). https://doi.org/10.1109/BIBM47256.2019.8983056

E. Vocaturo, and E. Zumpano, Proceedings of the 28th

Italian Symposium on Advanced Database Systems,

(2020). https://doi.org/10.1109/BIBM47256.2019.8983056

E. Vocaturo, E. Zumpano, et al., IDEAS, 24th International Database Engineering & Applications Symposium,1(2020). https://doi.org/10.1145/3410566.3410611

K. J. Busam, H. Kutzner, L. Cerroni and T. Wiesner, The American journal of surgical pathology, 38, 925, (2014). https://doi.org/10.1097/pas.0000000000000187

I. Giotis, N. Molders, S. Land, M. Biehl, M.F. Jonkman, N.

Petkov, Expert Syst. with Appl., 42, 6578(2015). https://doi.org/10.1016/j.eswa.2015.04.034

T. Lee, V. Ng, R. Gallagher, A. Coldman, and D. McLean, Computers in biology and medicine, 27, 533(1997). https://doi.org/10.1016/s0010-4825(97)00020-6

T. Mendonca, et al., Medicine and Biology Society (EMBC),

th Annual International Conference of the IEEE,

(2013). https://doi.org/10.1109/embc.2013.6610779

A. Astorino, et al., Interdiscip. Sci Comput. Life. Sci. 12, 24–

(2020). https://doi.org/10.1007/s12539-019-00341-y

A. Fuduli, P. Veltri, E. Vocaturo and E. Zumpano, Advances in Science, Technology and Engineering Systems Journal, 4,

(2019). http://dx.doi.org/10.25046/aj040502

A. Astorino, A. Fuduli, M. Gaudioso, and E. Vocaturo, Proceedings of the 27th Italian Symposium on Advanced Database (SEDB), 2019.

J. Kawahara, S. Daneshvar, G. Argenziano, G. Hamarneh, IEEE Journ. Biomed. Health Inf. 23, 538 (2018). https://doi.org/10.1109/jbhi.2018.2824327

N.C. Codella, et al., IEEE 15th International Symposium, 168 (2018). https://doi.org/10.1109/ISBI.2018.8363547

P. Tschandl, et al., Sci. Data, 5,180161(2018). https://doi.org/10.1038/sdata.2018.161

M. Combalia, et al. Bcn20000: dermoscopic Lesions in the

Wild, 2019 arXiv preprint arXiv:1908.02288.

Dermnet nz." [Online]. Available:

https://www.dermnetnz.org/.

M. Goyal, "Artificial intelligence in dermatology," DermNet NZ – All about the skin - DermNet NZ. [Online]. Available: https://www.dermnetnz.org/topics/artificial- intelligence/.

X. Liu, et al., The Lancet Digital Health 1, e271 (2019). https://doi.org/10.1016/S2589-7500(19)30123-2

E. Vocaturo, E. Zumpano, Smart Apps for Risk Assessment

of Skin Cancer, In press 2020

Amores, J., Artificial intelligence, 201, 81, (2013). https://doi.org/10.1016/j.artint.2013.06.003

G. Zhang, et al., IEEE Intern. Conf. on Bioinformatics and Biomedicine, Philadelphia, 1, (2012). https://doi.org/10.1109/BIBM.2012.6392648

A. Krizhevsky, et al., Communications of the ACM, 60,

(2017). https://doi.org/10.1145/3065386

E. Vocaturo, P. Veltri, Proc. Comp. Sci., 110, 498, (2017). https://doi.org/10.1016/j.procs.2017.06.132

M. Matsugu, et al., Neural Networks, 16, 555(2003).

https://doi.org/10.1016/S0893-6080(03)00115-1

W. Zhang, Proceedings of annual conference of the Japan

Society of Applied Physics, 1988.

W. Zhang, et al., Appl. Opt., 29,4790(1990). https://doi.org/10.1364/AO.29.004790

Liao, H., Univ. Rochester Dep. Comp. Sci. CSC (2015).

J. Kawahara, et al., IEEE 13th International Symposium on Biomedical Imaging (ISBI),1397(2016). https://doi.org/10.1109/ISBI.2016.7493528

T.-C. Pham, etal., Asian Conference on Intelligent Information and Database Systems, Springer, 573(2018) https://doi.org/10.1007/978-3-319-75420-8_54

N.C. Codella, et al., IBM Journal of Research and Development, 61,5 (2017). https://doi.org/10.1147/JRD.2017.2708299

H.A. Haenssle, C. Fink, et al., Ann. Oncol., 29,1836(2018). https://doi.org/10.1093/annonc/mdy166

T.J. Brinker, A. Hekler, et al., Eur. Journ. Canc. 113,

(2019). https://doi.org/10.1016/j.ejca.2019.04.001

A. Astorino, A. Fuduli, P. Veltri, and E. Vocaturo, IEEE Intern.

Conf. on Bioinformatics and Biomedicine (BIBM),

(2017). https://doi.org/10.1109/BIBM.2017.8217901

A. Astorino, A. Fuduli, P. Veltri, and E. Vocaturo, Proceedings of the 22nd International Database Engineering and Applications Symposium, ACM, 262(2018). https://doi.org/10.1145/3216122.3216144

M. Gaudioso, G. Giallombardo, G. Miglionico, and E.

Vocaturo, Soft Computing, 1 (2019). https://doi.org/10.1007/s00500-019-04255-1

L. Caroprese, et al., 9th International Conference on

Information, Intelligence, Systems and Applications

(IISA),1(2018). https://doi.org/10.1109/IISA.2018.8633647

Ianni, M. et al., Future Generation Computer Systems, 102,

(2020). https://doi.org/10.1016/j.future.2019.07.077

Ianni, M. et al., 26th Euromicro International Conference on

Parallel, Distributed and Network-based Processing (PDP),

(2018). https://doi.ieeecomputersociety.org/10.1109/PDP2018.20

00094

E. Vocaturo, E. Zumpano and P. Veltri, 9th International Conference on Information, Intelligence, Systems and Applications (IISA), 1(2018). https://doi.org/10.1109/IISA.2018.8633651

E. Vocaturo , L. Caroprese E., Zumpano, WI ’19 Companion,

(2019). https://doi.org/10.1145/3358695.3360898

J. Weingast, et al., J. Telemed. Telecare 19, 213(2013). https://doi.org/10.1177%2F1357633x13490890

K. Hogan, et al., Dermatol. Online Journ. 21 (6) (2015). http://escholarship.org/uc/item/84x5d2gg

E. Zumpano et al., IEEE International Conference on

Bioinformatics and Biomedicine (BIBM), 2125(2018), https://doi.org/10.1109/BIBM.2018.8621090

Published

2021-02-06 — Updated on 2021-02-13

Versions

How to Cite

Vocaturo, E., & Zumpano, E. . (2021). Useful Datasets and Very Recent Approach for Melanoma Image Classification. SPAST Express, 1(1). Retrieved from https://spast.org/ojspath/article/view/27 (Original work published February 6, 2021)

Issue

Section

Reviews & Perspectives